Biophysical Society Bulletin | September 2023

Biophysicist in Profile

Chrystal Starbird Area of Research Structural biology with specialization in x-ray crystallography

Institution University of North Carolina at Chapel Hill

At-a-Glance

Chrystal Starbird was first captivated by science as a second grader, starting a nature club at her school because she was fascinated by learning about animals and the environment. “I think that was really where it all started,” she shares. “However, in between that nature club and my life as a research scientist today there was a lot of uncertainty about what I wanted to do. I wanted to be a professional basketball player, a lawyer, a writer, and, at one point, I was certain I wanted to be President—because why not? But when I look back, it’s clear that science was the subject that most greatly matched both my interests and my talents.”

Chrystal Starbird

Chrystal Starbird , Assistant Professor in the Department of Biochemistry and Biophysics at the University of North Car olina (UNC) at Chapel Hill, was born in Tacoma, Washington but grew up in Boston, Massachusetts with her brother and mother, who raised the children as a single parent. “She didn’t finish high school or have a stable profession as I was growing up,” Starbird says, “but my mom has the curiosity that I think is a trademark of all scientists. We were quite poor, but she would do things like take my brother and me to a park and pick up snakes and scoop up tadpoles. I think that’s part of why I always felt so free to explore and excited to learn more.” Starbird received her bachelor’s degree from UNC Chapel Hill after completing some of her undergraduate studies at UNC Charlotte and a North Carolina community college. “I worked in many different fields from undergrad until graduate school, including time off from school working in academic core facilities and industry, but it was in a postbaccalaureate program at UNC that my true love of studying protein struc ture began, in a lab that studied the molecular machinery that controls bacterial chemotaxis,” she explains. “As part of my postbaccalaureate project, I determined eight structures of a chemotaxis protein, some to 1-angstrom resolution, and I was fascinated at the idea that I could visualize density for individual atoms of a protein.” After completion of her undergraduate studies, Starbird entered Vanderbilt University, where she earned her PhD in Chemical and Physical Biology. The biggest challenges of her career took place during these early years, as she dealt with life circumstances beyond what many of her peers were balancing. “I am a first-generation student from an impoverished background. I also had two children before I started graduate school, and my husband and I welcomed another child when I was in my second year at Vanderbilt. Sometimes it felt as if everything was difficult

and that achieving my dream of running my own lab was impossible. There were days when I had to take several buses, for example, to get to the lab because we couldn’t af ford to fix our car. On some of those days, I didn’t have money for the bus and my personal lunch, so I just went without eating, while always ensuring my kids had what they needed,” she recounts. “It was tough, but I was determined not to give up. No matter what you study in science, you learn to become a better problem solver, and I used all those skills to find solutions whenever they could be found. I asked questions, investigated, and learned to be my best advocate. Because of this, I was often very knowledgeable about resources avail able to my peers, so I was able to share this information with them on things like local food pantries, what childcare centers offered the best care for a reasonable price, special summer programs for kids, and mental health resources in the com munity.” After her PhD, she completed a postdoctoral position in the lab of Kathryn Ferguson at Yale University, where she worked on a new project investigating the structural basis of TAM receptor kinase activation. Starbird is now a new Assistant Professor in the Department of Biochemistry and Biophysics at UNC Chapel Hill. “I am expanding on some of the work from my postdoc to build a clearer picture of how TAM receptors are activated, including their interactions with potential co-receptors,” she explains. “I hope that by using a combination of structural and cel lular studies, my lab can help us to get a clearer picture of how TAM receptors form bridging complexes between two cells and interact with co-receptors to promote downstream signaling. Because TAM receptors play a crucial role in the development of various diseases, including cancer, I am also working in collaboration with other labs at UNC with struc ture-based drug-design projects to develop therapies target ed to TAM receptors.”

September 2023

2

THE NEWSLETTER OF THE BIOPHYSICAL SOCIETY

Made with FlippingBook Ebook Creator