Biophysical Society Conference | Estes Park 2023
Membrane Budding and Fusion
Monday Speaker Abstracts
MODEL FOR RING COLLAPSE AND MEMBRANE FISSION IN ER TUBULAR NETWORKS
Michael M. Kozlov ; 1 Tel Aviv University, Tel Aviv, Israel
Tubular networks of the endoplasmic reticulum (ER) are dynamic structures whose steady-state conformations are maintained by a balance between the persistent generation and vanishing of the network elements. While factors producing the ER tubules and inter-tubular junctions have been investigated, the mechanisms behind their elimination remained unknown. Here we addressed the ER ring closure, the process resulting in the tubule and junction removal through constriction of the network unit-cells into junctional knots followed by the knot remodeling into regular junctions. We considered the ring closure to be driven by the tension existing in ER membranes. We modeled, computationally, the structures of the junctional knots containing internal nanopores and analyzed their tension dependence. We predicted an effective interaction between the nanopores facilitating the knot tightening and collapse of additional network unit cells. We analyzed the process of the pore sealing through membrane fission resulting in formation of regular junctions. Considering the hemi-fission as the rate-limiting stage of the fission reaction, we evaluated the membrane tensions guarantying the spontaneous character of the pore sealing. We concluded that feasible membrane tensions explain all stages of the ER ring closure.
15
Made with FlippingBook Learn more on our blog